询价

微量差示扫描荧光法(nanoDSF)

微量差示扫描荧光法(nanoDSF)是一种生物物理表征技术,用于评估生物样品的构象稳定性。
它利用蛋白质固有的荧光来监测蛋白质对温度或混沌等压力输入的反应。该信息用于确定蛋白质的构象稳定性,并根据其对该稳定性的影响对候选或缓冲制剂进行排名。

对于治疗领域的研究人员来说,nanoDSF是一个有价值的工具

对于任何开发生物制剂或基因疗法的人来说,nanoDSF都是一个有用的工具。用于治疗的复杂生物样品,如酶、单克隆抗体或AAVs,必须在储存、运输和临床给药时高度稳定。

nanoDSF使您能够监测样品的构象稳定性。这些信息可以帮助您通过更改序列或缓冲环境来优化样品,并测量这些更改如何影响稳定性。稳定性参数用于对候选疗法进行排序,并选择具有更大稳定性的疗法进行进一步的表征和开发。

将nanoDSF技术应用于治疗发展的许多方面,包括:
  • 在表达和纯化过程中
  • 处方前研究阶段
  • 可开发性评估
  • 缓冲液配方及优化
  • 放大或工艺变更期间的可比性研究
Nano-Workflow-Graphic-nanoDSF image on light blue background with thick grey arrow

nanoDSF提供有关样品稳定性的见解

构象稳定性表明蛋白质样品保持折叠的可能性,以及它在压力条件下的承受能力。当对蛋白质样品施加热变性或化学变性梯度时,它将在热胁迫或化学胁迫作用下开始展开。研究人员使用展开发生的点这个参数来表征优化条件或样品环境对样品稳定性的总体影响的情况。

一级序列或缓冲环境的改变会影响蛋白质的稳定性。在筛选候选程序库或条件库时,重要的是只传递稳定性更好的候选程序。从nanoDSF数据生成的参数可以对候选对象进行排序,以提高稳定性属性。

Melting temperature, Tm

Melting temperature, or Tm, is the temperature along a thermal denaturation gradient at which 50% of the protein is folded, and 50% is unfolded. Tm is a commonly used parameter for ranking the most thermostable candidates – the higher the Tm, the more stable the candidate, and the more optimal it is for further development.

Onset of unfolding, Ton

Onset of unfolding, or Ton, is the temperature at which a protein begins to unfold. Modifications to the protein sequence or buffer do not always impact the Tm. Ton is an additional parameter to indicate the change in thermal stability when changes are made to a candidate.

拐点处的斜率

拐点处的斜率 衡量蛋白从折叠到去折叠的过渡有多急剧。更陡的斜率表示更陡的过渡,这被解释为更稳定的候选者。想象一个蛋白质,在温度变化太大之前,它一直保持着良好的折叠状态,然后突然展开。Ton 和 Tm 值会更接近拐点处的斜率
C50 or Cm
C50 or Cm values reflect the concentration of a chemical denaturant or chaotrope, at which 50% of the protein is unfolded, and 50% is folded. The more denaturant is required to unfold a protein, the higher this value is. Greater C50/Cm values indicate greater stability.
展开能量, ΔG

Energy of unfolding, ΔG, is an energetic value parameter that tells you how much energy input is required to trigger unfolding of your sample at a given temperature. Protein unfolding for most proteins used in labs is not energetically favorable, so energy is required to disrupt the folding; the more positive ΔG, the more energy is required to trigger unfolding. Change in ΔG, ΔΔG is used to compare the change in ΔG between two different conditions.

nanoDSF利用其固有的荧光产生有关样品的信息

Unfolding protein model@4x 1 with blue dotted lines and orange details

色氨酸残基根据温度(或浓度)梯度暴露于溶液中

Trp absorbance spectra@4x 1 graph with emission wavelength and redshift axes
色氨酸的最大排放随其化学环境的变化而变化;当折叠时,荧光在330 nm处最高,而当暴露于水溶液时,荧光在350 nm处更高

蛋白质含有色氨酸残基,它吸收280 nm的光。它们的发射性质随其化学环境而变化。当不溶于水溶液时,如折叠时,它们在 330 nm处有荧光发射峰。

当暴露于溶液中时,疏水侧链具有不同的发射性质,并且在350 nm处具有最大荧光。酪氨酸的释放也有一个全面的转变,这在蛋白质不含色氨酸残基的罕见情况下是有用的。

Plotting the F350/F330 ratio against the thermal or chemical denaturant concentration gradient results in a graph that has an inflection point at the Tm or C50/Cm. The first derivative view of this plot is sometimes used to more easily visualize where the inflection takes place; the inflection point corresponds to a peak in the first derivative plot. Highly sensitive optics enable you to monitor the shift in fluorescence attributed to unfolding due to either thermal or chemical denaturation.
ratio-first-derivitive graoh with temperature and F sub 350/F sub 330 axes

一阶导数叠加在比值梯度图上。拐点更容易通过寻找峰值来精确识别。

将nanoDSF添加到您的工作流程中,以了解更多关于基于蛋白质的治疗样品的信息。

PR_Panta front instrument view

PR提供了几种蛋白质优化方法,包括nanoDSF光学。了解更多关于仪器和它的工作原理。

PR_Panta front instrument view
Gradient spot

获取NanoTemper产品的报价