Successful GPCR measurements with MST

Microscale Thermophoresis (MST) paves the way for a new kind of drug-screening assay based on GPCRs. (Press information (NIM))

Receptor proteins located within the cell membrane serve to convey molecules or information into the interior. Because numerous drugs function by binding to such receptors, their interactions play important roles in the fight against various diseases. For example, the coupling can activate a signal chain which in the end specifically changes the metabolism of malignant cells. A collaboration between biophysicists from the LMU and researchers at the Massachusetts Institute of Technology (MIT) in Boston has found a very elegant and potentially revolutionary new way to screen for drug binding to membrane receptors. The Munich part of the project was led by scientists of the Nanosystems Initiative Munich (NIM) and of NanoTemper, a commercial spin-off of the LMU. The new approach will allow screening of the most common class of receptors (G protein-coupled receptors, GPCRs) for the binding of new drugs directly in solution. The study appears online in the recent Proceedings of the National Academy of Sciences of America (PNAS).